Tracking: Errors used in fits

G. Tzanakos Nov 1, 1999

Fig. 1 shows the χ^2 , χ^2/\mathbf{n} , and the quantities $\mathbf{y_1}$, and $\mathbf{y_2}$, defined as

$$\mathbf{y_1} = (\chi^2 - \mathbf{n}) / \sqrt{(2\mathbf{n})}$$

$$y_2 = \sqrt{(2(\chi^2) - \sqrt{(2n-1)})}$$

where **n** is the number of degrees of freedom, for tracks fitted in the data data of periods 3 and 4.

Clearly, the χ^2/n does not peak at 1. In addition, if everything is OK, the quantities y_1,y_2 should have a **normal** distribution with mean at **zero** and standard deviation of 1. As seen in Fig.1, y_1,y_2 are not behaving in the expected way.

One possible reason may be that the errors used in the overall fit are overestimated.

To show this I run some MC experiments:

I generated (10000 events) straight lines (50 z-x pairs) and then I used a gaussian error σ_{ϵ} to fudge

the data. I fitted this 'experimental straight line' assuming various errors in the fit:

$$\sigma = 1 \sigma_{\epsilon}$$
 (Fig. 2) Normal case
 $0.7 \sigma_{\epsilon}$ (Fig. 3) Underestimated
 $2\sigma_{\epsilon}$ (Fig. 4) Overestimated
 $3\sigma_{\epsilon}$ (Fig. 5)

As shown in these figures underestimation or overestimation of the errors moves the distributions of y_1 , y_2 away from zero and change their widths. In Figs 6,7 one can see the way that the mean and σ depend on the factor f ($\sigma = f \sigma_{\epsilon}$). In Figs 8,9 I have run the MC with straight lines made out of 5-40 points (this number was generated uniformly in this interval, in order to simulate different number of degrees of freedom) with two classes of straight lines:

- ♦ 1/3 of events with $\sigma = 3\sigma_{\epsilon}$
- 2/3 of events with $\sigma = 1.5 \sigma_{\epsilon}$

in order to create y_1,y_2 distributions that look like the data in Fig. 1.

Conclusion-question

Does this affect

- **♦** Momentum estimation
- **♦** Vertex fitting

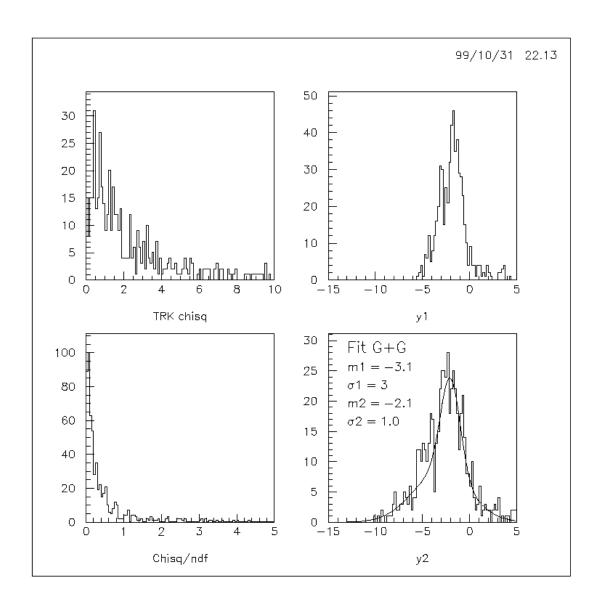


Fig. 1: Muon events from periods 3,4

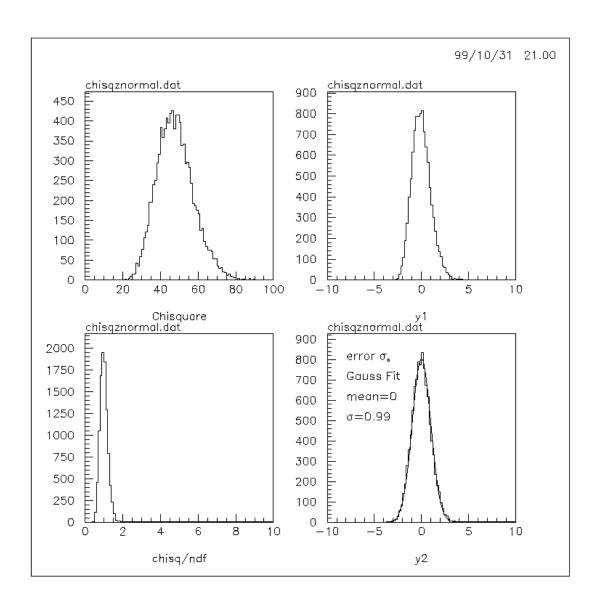


Fig. 2: Monte Carlo, f=1, (Normal)

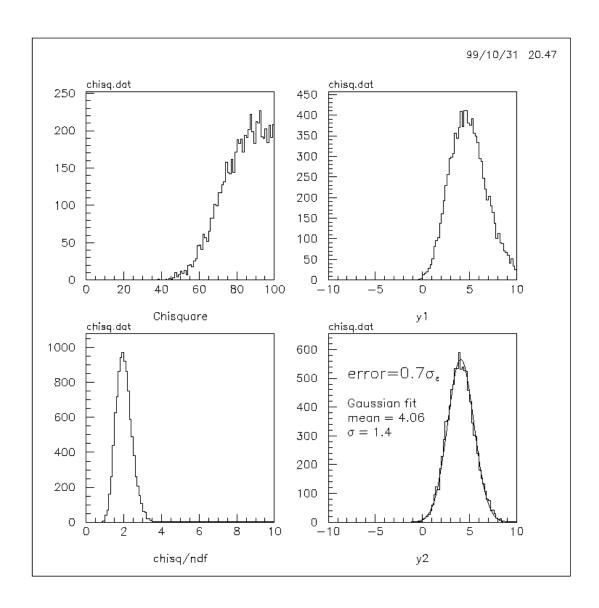


Fig. 3: MC, f=0.7 (Underestimated error)

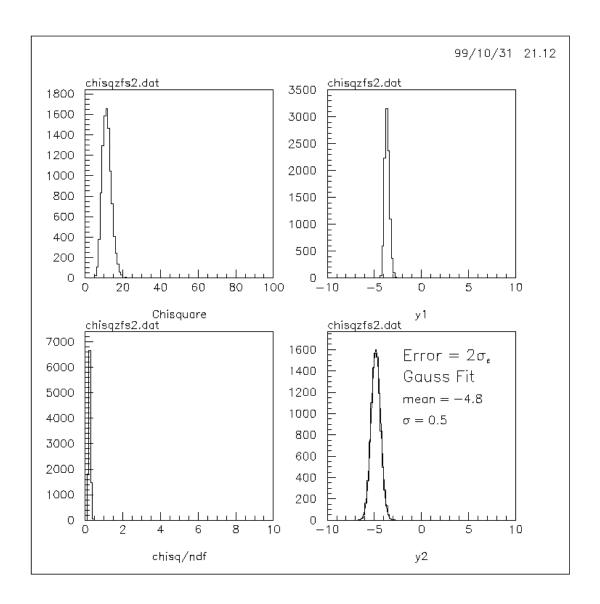


Fig. 4: MC, f = 2, (Overestimated errors)

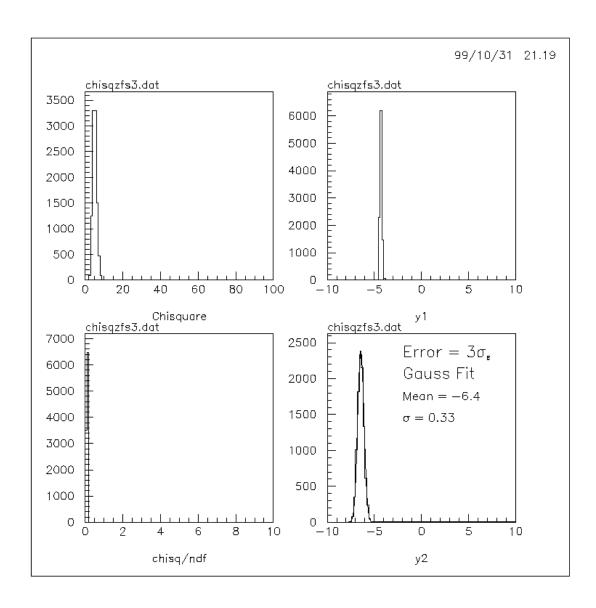


Fig. 5: MC, f = 3, (Overestimated errors)

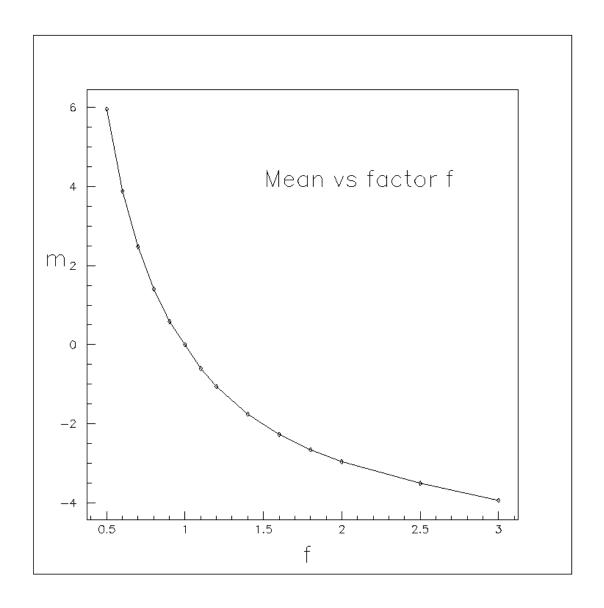


Fig. 6: MC, Position of mean vs factor f

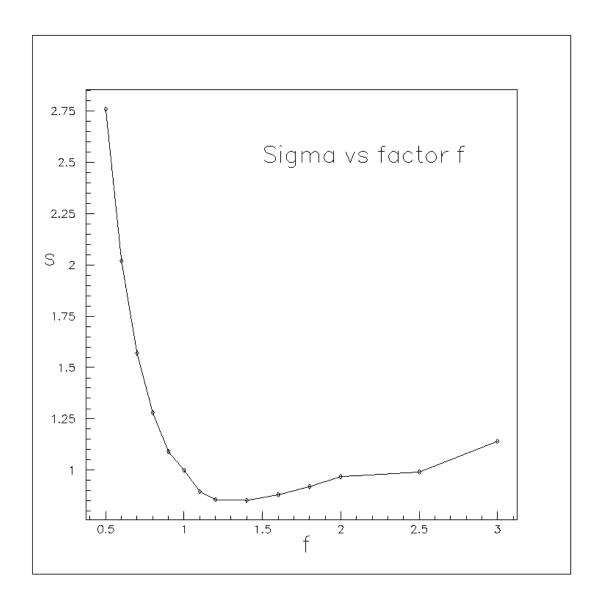


Fig. 7: MC, Sigma vs factor f

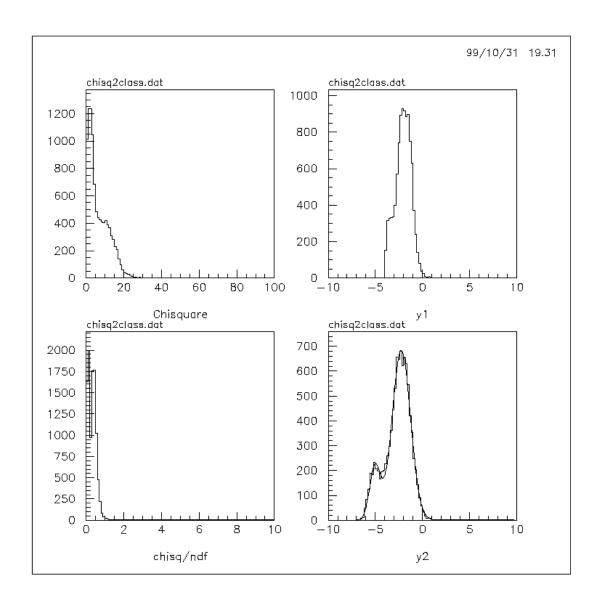


Fig. 8: MC, Two Classes of events

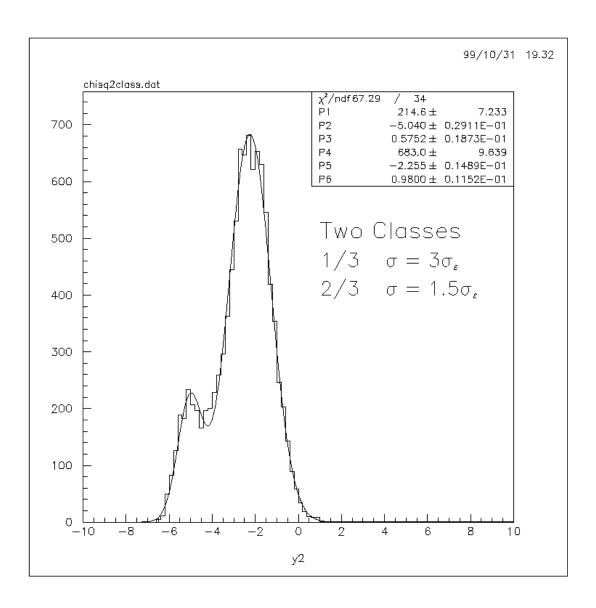


Fig. 9: MC, y₂ fits